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ABSTRACT

In this paper, we describe the BBN Byblos system used for
the 1996 Hub-4 Partitioned Evaluation (PE) and Unparti-
tioned Evaluation (UE) tests. For the PE, we chose to ignore
the segment feature labels that were given to the system as
side-information so that our approach would generalize triv-
ially to the UE. Moreover, we chose not to model speci�c
channel conditions in the training because the observed gains
were too small to warrant the additional system complexity
required to support them. In the end, we estimated a single
set of acoustic models from only 40 hours of broadcast news
data. For the UE, the data was automatically segmented
with a simple dual-gender phoneme recognizer that e�ciently
located pauses and changes in speakers' gender. After this
preliminary stage of segmentation and gender-classi�cation,
our UE and PE systems were identical. We achieved a 30.2%
word error rate on the PE test and 31.8% on the UE test -
only a 5% relative degradation from our PE result.

1. INTRODUCTION

The 1996 Hub-4 tests evolved in a fashion that posed several
new problems to researchers. The transcriptions accompany-
ing the acoustic training data went through several iterations
of re�nement that didn't settle down until 2 weeks before the
evaluation test period began. This required that we �x our
development paradigm well before the training data had sta-
bilized and then rapidly cut over to the new data when it
arrived in its �nal form.

In addition, the total amount of Broadcast News (BN) data
made available for acoustic training was only about 38 hours
of speech. From past experience on large vocabulary tasks,
this amount of within-domain acoustic data seemed rather
small, especially since it was divided among a wide variety of
conditions. Only about half of the BN data came from native
speakers in a quiet environment over a wide-band channel.
In response, we felt compelled to compare adaptation from
a WSJ seed model estimated from 72 hours of clean speech
to training directly on the 38 hours of mixed-condition BN
data.

Finally, the PE and UE tests di�ered in the total side-
information made available to the system, beyond the sim-
ple di�erence in segment boundaries. In the PE, the data
was partitioned into segments having constant speaker, chan-
nel, and background conditions and the segments were given
to the system with feature labels denoting these conditions.
This test was conceived as a pedagogically useful breakdown
of the real problem that would permit developers to con-

centrate on fundamental recognition problems without being
diverted into dealing with pre-segmentation issues. But for
systems intended to be evaluated on both the PE and UE
tests, this test design required a choice between deploying
the same system for both tests, or using the additional side-
information for the PE and deploying a di�erent system for
the UE.

After conducting exploratory experiments to probe several
di�erent training paradigms, we opted for simplicity by train-
ing from scratch using only the BN data and by creating only
a single set of condition-independent prior models. Further-
more, we chose to ignore the segment condition labels given
in the PE test in order to focus on approaches that would
be viable for the general UE problem. As a consequence, our
PE system was identical to our UE system, save for an addi-
tional pre-segmentation step needed for the UE. This strat-
egy permitted us to easily achieve a very small di�erence in
performance between the two tests and demonstrated that
tackling the whole transcription problem head on is possible
now without diverting research away from the fundamental
problems.

2. SYSTEM ARCHITECTURE

The 1996 Byblos Transcription System is organized into the
following logical stages:

1. Segment and classify gender

2. Cluster the segments

3. Decode with Speaker-Independent (SI) models, to get
transcriptions for adaptation

4. Adapt models to each cluster

5. Decode with Speaker-Adapted (SA) models, to produce
the �nal answer

We create a set of general acoustic models that are speci�c to
a particular stage. The models in the set are distinguished by
their tying across HMM states, the training paradigm used,
the gender of the training speakers, and the presence or ab-
sence of cross-word triphones.

In our Phonetically Tied Mixture (PTM) model, we allo-
cate one mixture per phoneme. Each mixture has 256 com-
ponents, resulting in about 12K Gaussians total. In our
State-Clustered Tied Mixture (SCTM) model, 1000 mixtures
are estimated with 64 components each. We create two
SCTM models - one with only within-word triphones, and



one with cross-word triphones included. A pooled speaker
training paradigm is used to create models for the SI stage.
A Speaker-Adapted Training (SAT) paradigm [2] is used for
the SA stage. Finally, separate models are estimated for each
gender.

3. RECENT IMPROVEMENTS

3.1. 2-Pass N-best Decoder.

We have recently simpli�ed our decoder strategy. A new 2-
pass N-best decoder [7] has been implemented that is smaller
and faster than our previous 4-pass decoder. This decoder
uses a fast-match algorithm in the forward pass with PTM
models, within-word triphones, and a bigram LM, producing
a lattice of word ending times and scores. The backward pass
uses SCTM models, within-word triphones, and a trigram
LM, to produce the N-best hypotheses. After decoding, the
N-best list is rescored with a cross-word SCTM model to
produce the 1-best answer.

3.2. SNR-Dependent Normalization

We extended our simple Cepstral Mean Subtraction (CMS)
normalization to accomodate a separate adjustment for
speech and noise, in the manner of [1]. For each frame of data,
we compute the probability of its being speech or noise based
on frame energy. We estimate separate normalization vectors
for speech and noise and shift each frame with a weighted
combination of the two. In comparison to our old method,
we observed a small gain on clean speech, and a small loss
for noisy data.

3.3. Speaker-Adapted Training

The goal of SAT is to remove the variability among train-
ing speakers to achieve more compact HMM distributions
[2]. Until recently, we had never tried to adapt more than
300 training speakers due to the prohibitive I/O requirements
of our initial implementation. The BN training corpus con-
tained over 2000 speakers, so we re-implemented SAT to han-
dle large populations of speakers [6]. For the 1996 Hub-4 test,
we adapted to 1000 speakers that had more than 20 seconds
of speech. The remaining speakers (about 1400), accounting
for about 15% of the training, were simply added as SI train-
ing. Due to lack of time, SAT models were only used in the
�nal rescoring stage. Normally, we would use adapted SAT
models for both passes of the �nal decode as well.

3.4. Acoustic Segmentation (UE)

For the UE test, the large monolithic input waveforms need
to be cut at gender-change boundaries and classi�ed as male
or female, since our acoustic models are gender-dependent
(GD). We also need to break the long segments into shorter
ones for computational e�ciency in the N-best stage. We
accomplished both tasks with a dual-gender, PTM, context-
independent phoneme decoder. Male and female HMMs were
decoded in parallel in a single pass over the data, result-
ing in a sequence of time-stamped pauses and gender-tagged
phones. The desired segments could then be produced by
cutting the input at pause locations and gender changes in-
dicated in the phone transcription. Boundary decisions were

guided by several heuristics. No segment was permitted to
be shorter than 2 seconds. And boundaries were not located
within pauses shorter than 150 milliseconds, unless the hy-
pothesized segment grew beyond about 10 seconds.

This simple model proved to work very well. It e�ectively
rejected segments of pure music or noise by labeling them
as pauses (non-speech intervals were included in the pause
training). In fact, it was better at noise rejection than our PE
approach. The gender classi�cation was surprisingly stable
at the phoneme level - the labels within a segment had a high
degree of purity. Even so, it should be easy to improve on
this simple model. Context-dependent phone models should
always be better and we could measure the acoustic dissim-
ilarity of segments adjacent to any pause to determine if a
cut should be made at that point. By splitting dissimilar seg-
ments apart, we should improve our ability to cluster similar
segments together for unsupervised adaptation.

3.5. Linguistic Segmentation

It seems reasonable to assume that the segmentation stage
should produce segments containing word sequences that are
consistent with the LM training. All of our LM training data
is tagged with sentence boundaries, so we'd like to be able to
chop segments with knowledge of where the likely sentence
boundaries occur. We revived our work in linguistically-
guided segmentation that we introduced in [5]. The basic
idea is to change the LM so that the decoder can score a
transition to a sentence end after every word hypothesis in
the decoder. Then a decision to break the segment is made as
a function of the sentinel score and the length of the pause at
that time. But as we found previously, we have not been able
to improve on the simple expedient of cutting at the longer
pauses located by the standard decoder.

3.6. Speaker Clustering

The goal of speaker clustering is to group segments from the
same speaker and condition together to improve the e�ec-
tiveness of unsupervised adaptation. We have developed a
fully automatic blind clustering algorithm [4] to accomplish
this. We cluster segments (within each episode and gender)
using a segment distance measure borrowed from our work
in Speaker Identi�cation [3]. A penalty is applied against the
number of clusters created to establish a termination crite-
rion in conjunction with the likelihood of the model at each
stage of splitting. A positive bias is applied for segments that
occur close in time, since they are more likely to be from the
same speaker or condition. This approach worked as well as
the ideal case of adapting with prior knowledge of speaker
identity and signal condition.

4. HUB-4 ISSUES

4.1. Acoustic Training.

We used approximately 40 hours of speech for acoustic train-
ing. The 1996 Hub-4 training set contained data from 87
episodes, and we added the 10 episodes of 1995 Marketplace
(MP) data to the training. We made no use of the F-condition
labels in training; instead, all training data (within a gender)
was pooled regardless of condition. This was done after we



observed that the gains for condition-speci�c models was too
small to justify the additional system complexity required [8].
We did use the gender information in training, and for SAT
training, we also used the speaker identity.

4.2. Transcription Validation.

Since the training data arrived so late, we needed to validate
the transcriptions quickly and begin training immediately.
We practiced on the preliminary release that became avail-
able on July 31, 1996. This release contained about 23 hours
of actual speech. We aggressively rejected all troublesome
segments reducing the training by the following percentages:

� any data labeled as low �delity or high music/noise -
15%

� segments with OOV - 10%

� forced alignment failures - 1%

� failures in training - 2%

We ended up with 16 hours of usable speech for development.
In the �nal release, which became available 2 weeks before the
evaluation began, we again rejected 3% for those segments
that failed alignment or training. But we included all low
�delity and high music or high noise data, and added all
words to the lexicon before training.

4.3. Lexicon Design.

We created a word frequency list from Broadcast News (BN)
and WSJ texts from the 1992-1996 period only. In coverage
experiments on the Hub-4 development test, we observed no
gain for using more data, and we saw no e�ect for weighting
the data as a function of recency. We included all words found
in the 1996 BN and 1995 MP acoustic training transcriptions,
and then added words from the frequency list until we reached
45K words. At that point, coverage on the dev test was
99.1%. All new phonetic spellings were added by hand.

4.4. Language Model Training.

We used a total of 430M words for language model training
from the following 5 LDC corpora:

� 131M 1992-96 BN, o�cial Hub-4 release

� 254M 1988-94 WSJ

� 45M 1994-95 North American News

� 346K 1996 BN acoustic training

� 50K 1995 MP acoustic training

The �nal LM had 6M bigrams and 11M trigrams.

4.5. PE / UE System Di�erences.

There were only two di�erences between the systems we used
for the PE and UE tests - the method used to segment and
classify gender on the front end, and a �lter on abnormally
long words used on the back end. In all other respects, the
two systems were identical. At the front end of the PE, we

�rst decoded each given segment with male and female mod-
els. We classi�ed the segments based on their recognition
score, and then chopped the long segments at pauses located
by the decoder. For the UE, we segmented at gender-changes,
classi�ed the segments for gender, and chopped them all in
one step. At the back end of the UE only, we removed any
word that was more than 2 times longer than had been ob-
served in training. These giant words occur during periods
of pure music or noise.

Our PE and UE systems could easily be completely identical.
The phonetic gender segmenter is very accurate and much
faster. And the long word �lter works just as well on the PE.
The only reason these systems di�er at all is the lack of time
we had for develoment.

5. EXPERIMENTS

As soon as we received and validated the 16 hours of BN
training data, we estimated a PTM HMM from the data and
compared it to our 1995 Hub-4 model. Last year's model
was trained on 72 hours of WSJ data (close-talking micro-
phone channel) and then adapted to the 10 episodes (4 hrs)
of Marketplace training. In table 1 we show the WER for
both systems on 4 episodes from the 1996 Hub-4 develop-
ment test. For this experiment, both systems used SI PTM
HMMs and within-word triphones. The new model is better

System 1995 1996

NPR The World 57.2 54.0
C-SPAN Washington Journal 56.2 48.7
NPR Morning Edition 42.0 39.8
Marketplace 31.3 28.8

Table 1: Comparison of two training paradigms: 1995
adapted WSJ and 1996 BN pooled-condition training

for each episode, despite its having only about one �fth as
much training. Surprisingly, the new model is better for the
Marketplace episode as well, even though last year's model
was adapted to that very show. It's quite possible that the
distant-mike channel of the WSJ corpus would perform bet-
ter as a seed model for adaptation to BN. But at this point
we decided to abandon the adaptive training paradigm that
we used in 1995. And when the �nal release of the BN data
arrived, increasing the BN training to 40 hours, the perfor-
mance improved with a 6% relative reduction in WER.

We conducted additional experiments to determine how best
to use the BN training data, given its highly variable compo-
sition. Is it better to create models for each of the conditions
with supervised adaptation to the partitioned training data,
or simply pool all the data BN data together and rely on
unsupervised adaptation to the test to handle the variable
conditions? These and related issues are discussed in [8].

In table 2, we show our PE test results for the November
1996 Hub-4 evaluation, broken out by condition. Recall that
the PE test provides the system with segment boundaries
and condition labels for each segment. We made no use of



SI SAT relative
Condition adapted gain

F0. prepared 23.8 21.6 9.2
F1. spontaneous 32.6 29.5 9.5
F2. low �delity 38.0 32.7 14.0
F3. music 26.1 23.3 10.7
F4. noise 40.8 38.4 5.9
F5. non-native 36.1 31.8 11.9
FX. mixed 55.2 49.9 9.6

OVERALL 33.4 30.2 9.6

Table 2: PE evaluation result, for SI and SAT adapted recog-
nition, by F-condition.

these segment labels, however. The results show gains in
each condition for unsupervised adaptation to the test. The
F2-condition, which includes the telephone data, enjoyed the
largest gain. Still, the 9.6% overall gain for adaptation is
rather small compared to improvements observed on other,
less variable data such as WSJ.

Our 1996 UE evaluation result was 31.8% WER. We lost only
about 5% relative for automatic segmentation. Last year, we
determined that our segmentation algorithm was degrading
performance by 21%. We tested our complete 1996 UE sys-
tem, without any changes, on the 1995 Hub-4 evaluation test
to measure our improvement for the year. The result was
26.5% WER compared to 42.7% last year. But WER alone
doesn't tell the whole story. In contrast to the typical ap-
proaches adopted for the 1995 Hub-4 test, our new system has
no speaker-dependent models, no channel-dependent models,
and it is not show-dependent. Our new system is much bet-
ter (in terms of WER), simpler, and more general than our
previous one.

6. COMPUTATIONAL RESOURCES

We did the bulk of our processing on Silicon Graphics Indys
with R4400 CPUs and 160 MB RAM. This is a 3 year old
CPU, rated at about 90 SPEC92 for both integer and oating
point performance. The SI decode (forward, backward, and
rescoring) took about 80 times real-time. The SA decode
ran faster at about 65 times real-time. The time required
to adapt the models was signi�cantly less than the decoding
time and was dominated by I/O in our current implemeta-
tion. Computational requirements for training are given in
[6].

7. CONCLUSIONS

We have demonstrated that the segmentation problem in
broadcast news transcription is not a di�cult one. Using
a simple phonetic gender segmenter on the monolithic input
waveform, we su�ered only a 5% relative loss in performance
from the PE test. Simple methods seem to work well enough.
Therefore, the segmentation problem should not stand in the
way of working on the whole problem, represented by the UE
test.

In both training and decoding for the PE test, we made no
use of the given F-condition labels. In training, data from all
conditions was pooled. For test, we automatically identi�ed
speakers and channel conditions by a blind clustering proce-
dure [4]. Also, though we found that we could achieve small
improvements using condition-speci�c models, we considered
the gain too small to justify the additional system complexity
[8]. So the F-condition labels have no value for us in training,
and in test, they are only useful for diagnostic purposes.

Finally, the 1996 Hub-4 results show that degradation due
to channel, background, and speaking style conditions is sec-
ondary to the fundamental speech recognition error rate. Per-
formance on clean, wideband, prepared speech from broad-
cast news is about 20%, which is completely unacceptable.
That is the problem on which we intend to focus our e�orts.
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